If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-30x-32=0
a = 9; b = -30; c = -32;
Δ = b2-4ac
Δ = -302-4·9·(-32)
Δ = 2052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2052}=\sqrt{36*57}=\sqrt{36}*\sqrt{57}=6\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{57}}{2*9}=\frac{30-6\sqrt{57}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{57}}{2*9}=\frac{30+6\sqrt{57}}{18} $
| 9x^2-15x-3=0 | | 2n-5n=7 | | 22=(5/12*29)+x | | 22=5/12*29+b | | x*3+0x*2+x-100=0 | | 17x+15-5x-10=10x-10 | | x*3+x-100=0 | | 3x^2+4x+10=2√14x2+7 | | 17x+15x-5x-10=10x-10 | | x2+12x+5=0 | | x/2-1-3=5/6 | | 5r^2-8r-5=0 | | -4=2x-15 | | x/10+6=7 | | 3x,x=21 | | (x/2)+x=600 | | 5/7x-7/2x-3=3/14 | | (x/2)+x=570 | | a÷4+4=12 | | 4f+2+6=2f+-3+5 | | -3x-20+7x=8x+15-9x-38 | | 1/9x3+x+4=0 | | 5(x+7)=7.5x | | X2+4x+3.75=0 | | 2^3n+1.4^n-1/8^n=64 | | 7x=5x=9 | | (x/2)+x=480 | | 2x+3/x-1=7 | | 480=(x/2)+x | | 480=x/2+x | | t^2-6t-1=0 | | 2(a-2=4a-(2a+4) |